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Recently it has been demonstrated that three-dimensionality can play an important 
role in dictating the stability of any Gortler vortices which a particular boundary layer 
may support. According to a linearized theory, vortices within a high Gortler number 
flow can take one of two possible forms within a two-dimensional flow supplemented 
by a small crossflow of size O(Re-tGt), where Re is the Reynolds number of the flow 
and G the Gortler number. Bassom & Hall (1991) showed that these forms are 
characterized by O( 1)-wavenumber inviscid disturbances and larger O(G')- 5 wave- 
number modes which are trapped within a thin layer adjacent to the bounding surface. 
Here we concentrate on the latter, essentially viscous, vortices. These modes are unstable 
in the absence of crossflow but the imposition of small crossflow has a stabilizing effect. 
Bassom & Hall (1991) demonstrated the existence of neutrally stable vortices for certain 
crossflow/wavenumber combinations and here we describe the weakly nonlinear stabili ty 
properties of these disturbances. It is shown conclusively that the effect of crossflow is to 
stabilize the nonlinear modes and the calculations herein allow stable finite-amplitude 
vortices to be found. Predictions are made concerning the likelihood of observing some of 
these viscous modes within a practical setting and asymptotic work permits discussion of 
the stability properties of modes with wavenumbers that are small relative to the implied 
~ ( d )  scaling. 

1. Introduction 
Over the past 50 years there has been interest in the stability properties of Gortler 

vortices within boundary-layer flows. Early studies ignored non-parallel effects present 
due to boundary-layer growth; the importance of this phenomenon was first explained 
by the results of Hall (1982a, b, 1983). In that series of papers Hall showed, using both 
asymptotic and numerical methods, that for vortices of order-one wavenumber there 
is no unique neutral linear stability curve and the stability characteristics of such 
wavenumber modes are entirely dependent upon the initial form and location of the 
disturbance. However, for small-wavelength vortices a unique neutral curve does exist 
and on this curve the vortex wavenumber k is O(Gi) where G is the (large) Gortler 
number. For an extensive review of the development of stability theory pertinent to 
Gortler vortices the reader is referred to Hall (1990). 

The most unstable Gortler mode was obtained by Denier, Hall & Seddougui (1991) 
and Timoshin (1990). These authors showed that according to linearized theory the 
vortices with largest growth rates have wavenumbers within the O(Gg) regime and the 
corresponding amplification rates are then O(Gj). The exact stability properties of 
O(Gg)-wavenumber vortices are derived by solving a sixth-order ordinary differential 
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system and the solution of this system reveals that the unique most unstable mode has 
wavenumber k = 0.4766; and growth rate 0.312Gg. 

Much of the work to date concerned with the stability of Gortler vortices has 
concentrated on two-dimensional boundary-layer flows, but in many practical 
situations in which Gortler vortices are known to arise the basic boundary layer is 
three-dimensional. For example, in the case of a boundary-layer flow over an obstacle 
or the flow over a turbine blade the three-dimensionality of the basic flow is potentially 
crucial. In particular, the development of laminar-flow airfoils has given rise to designs 
that have two areas of concave curvature on the lower side of the airfoil: in this case 
when the wing is swept the boundary-layer flow is fully three-dimensional. 

The first attempt to describe the effect of three-dimensionality was given by Hall 
(1985) who examined the Gortler mechanism in flow over an infinitely long swept 
cylinder. It was shown that it is the relative size of the crossflow and chordwise flow 
over the cylinder that is critical in determining the vortex structure. The neutral Gortler 
number for the vortices was predicted by a large-wavenumber asymptotic analysis, the 
results of which suggested that for O(1) values of the ratio of the crossflow and 
chordwise velocity fields the Gortler mechanism is probably unimportant compared 
with Tollmien-Schlichting and crossflow-type instabilities. Indeed, there is some 
limited experimental evidence that supports this conclusion. Work by Baskaran & 
Bradshaw (1988) has shown, at least for turbulent boundary layers, that increasing the 
crossflow velocity component tends to destroy the Gortler mechanism. 

Bassom & Hall (1991) (hereafter referred to as BH) extended the work of Denier et 
al. (1991) to consider the effect of introducing crossflow into the boundary-layer flow. 
Like Denier et al., BH conducted a spatial stability analysis of the vortex modes and 
they demonstrated that for O( 1)-wavenumber modes at large Gortler numbers the 
crossflow first has significant effect on the two-dimensional results once it becomes 
O(RedG:), where Re is the Reynolds number of the flow. As the crossflow increases, 
the stationary vortex structure takes on an identity which is essentially that of a 
crossflow instability; a mechanism first investigated by Gregory, Stuart & Walker 
(1955). BH also obtained a description of the influence of crossflow on the O(&)- 
wavenumber (viscous) vortices of Denier et al. (1991). It was shown that when the ratio 
of crossflow to chordwise flow becomes O(RedG2) the results of Denier et al. need to 
be modified : significantly it was demonstrated that the introduction of crossflow into 
the problem has a stabilizing effect, at least according to linear stability theory. 
Whereas in Denier et al. it was proved that stationary vortices are necessarily unstable 
at O(Gi) wavenumbers, this is no longer true once crossflow terms are introduced. In 
addition, for certain crossflow values there exist neutrally stable vortex modes whilst 
at large enough values of the crossflow no vortex structures induced by centrifugal 
effects can exist. 

The aim of the present paper is to extend BH by studying the weakly nonlinear 
stability characteristics of the O(d)-wavenumber modes. Denier & Hall (1993) have 
made a numerical study of the fully nonlinear evolution of these high-wavenumber 
structures within a two-dimensional boundary layer. They have shown that the 
nonlinear equations governing the Gortler vortex over an O(G-9 streamwise 
lengthscale are fully non-parallel in nature. By implementing the computational 
scheme developed by Hall (1988), Denier & Hall illustrated that given a suitable initial 
perturbation then eventually the energy of the higher harmonics grows until a 
singularity is encountered at some downstream position. It is concluded that it is this 
singularity that is ultimately the cause of vortices which are originally close to the wall 
moving into the main part of the boundary layer. 
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Although extensive calculations will eventually be desirable in order to assess the 
fully nonlinear stability properties of Gortler vortices within three-dimensional 
boundary layers, here we shall consider a more analytical weakly nonlinear approach. 
This case is not without interest for it is likely to be of importance in the stability of 
several flows occurring in practice. In Denier et al. (1991) studies were made of the 
receptivity of boundary layers to Gortler vortices. Typically, small disturbances in the 
boundary layer or small surface imperfections make the flow susceptible to vortices 
and since these disturbances or imperfections are usually of small dimension it is the 
high-wavenumber vortices that are often excited. This then suggests that modes of 
O(Gg) wavenumber (i.e. within the wavenumber regime containing the most unstable 
linear mode) will perhaps be favoured in preference to the larger scale O(1)- 
wavenumber inviscid modes. We have already mentioned that in the absence of 
crossflow all steady Gortler modes of O(Gi) wavenumber are unstable but the addition 
of a small crossflow stabilizes the situation and, in particular, certain crossflow/ 
wavenumber combinations lead to linearly neutrally stable modes. In consequence, a 
small surface imperfection may well trigger modes which, although linearly unstable, 
are only marginally so and then a weakly nonlinear analysis is of relevance in 
determining whether these modes grow without bound or whether nonlinear effects 
exert a stabilizing influence and lead to finite-amplitude stable states as the vortices 
develop downstream. 

The remainder of the paper is divided as follows. In the coming section the problem 
is formulated and the weakly nonlinear equations are obtained. The numerical 
methods implemented to solve these equations are described in $3 and the nonlinear 
properties of the modes examined in $4. Section 5 addresses the low-wavenumber limit 
of the amplitude equation, and we close with some discussion. 

2. Derivation of the weakly nonlinear equations 
Our aim is to derive the equations which determine weakly nonlinear high- 

wavenumber viscous vortex modes in a slightly three-dimensional boundary layer. 
Following Hall (1985) we consider the boundary layer flowing over the cylinder y = 0, 
- 00 c x < co, where the z-axis is a generator of the cylinder, y is the distance 
normal to the surface and the x-coordinate measures distance along the curved surface. 
Suppose that this surface has variable curvature 

(lib) x(x l l ) ,  (2.1 a) 

where b is a typical radius of curvature of the surface and 1 is a characteristic 
lengthscale in the streamwise direction. The Reynolds number Re, the curvature 
parameter 6 and the Gortler number G are defined by 

Re = Uol/v, 6 = lib, G = 2Rei6, (2.1 b-d) 

where U, is a typical flow speed in the x-direction and v is the kinematic viscosity of 
the fluid. Our interest is in the limit of Re % 1 and 6 4 1 such that in the limit S+O 
G is held fixed at an O( 1 )  value. The basic flow is taken to be of the form 

(2.2) 

where X = x/Z and Y = yRei/l,  and the crossflow parameter A* is of order one. 

temporal variable scaled on l /Uo.  The basic velocity profile is perturbed by 

u = U,(iI(X, Y ) ,  Re-b(X, Y ) ,  Re-h*w(X, Y))(1 + O(Re-i)), 

It is convenient to define the scaled spanwise coordinate Z = Reiz/l and let t be the 

( 2 . 3 ~ )  (U( t, X ,  Y, Z), Re-f V( t ,  X ,  Y, Z ) ,  Re-; W( t ,  X ,  Y,  Z)), 
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the pressure field is given by 
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p = p(X)  + Re-'P( t, X, Y, Z), (2.3h) 

and on substituting (2.3) into the continuity and Navier-Stokes equations we obtain 

u,+ vy+ w, = 0, ( 2 . 4 ~ )  

- U t + U y y + U z z - C y  V-uUX-Ux U-DUy-h*WUz= UU,+VUy+ WU,, 

- <+ Vyy+ &z-G~CU-Py-UVx-Vx U-BVy-Vy V-A*WV, 

(2.46) 

= UVx+ VVy+ WVz+GxU2/2 ,  ( 2 . 4 ~ )  

- y+ wyy+ w,,-P,-UW,-A*w* U-VW,-h*V@,-h*WW, 

= UWx+ VWy+ WW,, (2.4d) 

where terms of relative order Re-; have been neglected. 
We now follow the scalings first derived by Denier et al. (1991) in which it was shown 

that the O(G2)-wavenumber vortices are confined to a layer of thickness O(G-i) 
adjacent to the cylinder. These modes have a spatial growth rate O(Gg), and it was 
proved in BH that the three-dimensionality of the basic flow is first significant for these 
viscous vortices once the scaled cros;flow A* is O(Gi). Therefore it is convenient to 
define the O( 1) crossflow parameter h by 

A* = di. (2.5a) 

If the spanwise wavenumber of the fundamental vortex is taken to be a (which, recall, 
is O(G5)) then the scaled wavenumber k, is defined according to 

a = k,  GS, (2.5 b) 

and the disturbance is confined to the region where the coordinate $ given by 

$ = k,  GiY, ( 2 . 5 ~ )  

is of order one. In BH linearized disturbances were sought proportional to 

s' ik, G k  + Gi @, + G-$?,(X) + . . .) dX- iGg (Q,(t) + G-;Q,(t) + . . .) dt], 
X 

(2.6) 

where this definition reflects the fact that the vortex has spanwise wavenumber O(Gg) 
and the disturbance has an O(Gi) growth rate (since it transpires that Po is purely 
imaginary). Furthermore, for small Y the basic flow quantities u and W are assumed to 
take the forms 

u = Pll(x) Y +  hl,(x)/2 !] y2 + b13(X)/3 !] y 3  +. . . , ( 2 . 7 ~ )  

= p Z l ( X )  Y +  bzz(x)/2 !] y 2  + b,,(X)/3 !] y 3  + . . . , (2.7b) 

and V = O(Y2).  To extend the work of BH to weakly nonlinear modes necessitates 
considering expressions of the form 

U = G-E[h( U,,, El + c.c.) + h2( U,,, E f  + C.C. + U,,,) + h3( U,,, El + c.c.) + . . .] 
+ G-g[h( U,,, El + c.c.) + h2( U,,, E ;  + c.c. + U,,,) + h3( U,,, El + c.c.) + . . .I, (2.8) 

with similar expressions for G-fV, G-fW and G-fP (c.c. denotes complex conjugate). 
Here all the unknown coefficients Uoll, Uoz2, . . . are functions of the scaled coordinate 
$ alone and h is taken to be a parameter, 0 < h 6 1, such that expansions in h are taken 
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after expansion in the small parameter G-i. Furthermore, the wavenumber p1 and 
frequency Do need to be expanded in terms of h as in the usual Stuart-Watson (1960) 
approach and details of this will be given presently. 

Derivation of the required evolution equation is a relatively straightforward though 
slightly lengthy process. The methodology is similar to that employed by BH and thus 
we shall indicate how this is tackled for the leading-order disturbance quantities Uoll, 
vOll, W0,, and Poll. Given this information, the ensuing calculations follow almost 
identical lines so that only the final results need be stated. 

The vortex equations are deduced by substituting (2.5)-(2.8) in (2.4) and comparing 
coefficients of like powers of G and h. The continuity equation ( 2 . 4 ~ )  yields 

(2.9a) 

(2.9b) 
P o  UOll +iko WOll = 0, 

Pl UOll + P o  Ulll+ iko Kl + ko(d Kll/d$) = 0- 

The streamwise and spanwise momentum equations (2.4b, d )  then give 

P o  Uo20 +iko w , z o  = - [CoOPl,/kJ) +&,,I @, (2.10) 

but the constraint that the disturbance be confined to the thin wall layer requires that 
Uo20, W0,, remain bounded as @ + 00, which in turn forces the relationship 

CCj0P11/~0)+i~P21 = 0. (2.114 

This confirms the assertion that Po is purely imaginary and then (2.10) becomes 

P o  u020 + iko 6 2 0  = 0. (2.11b) 

Next-order terms in the streamwise momentum equation lead to the equation 

iaP11 Pzz -P12 PZl) $21 UOl, -ELL v,,, = 0. (2.12) 
% Pll k: 

The second equation for the leading-order vortex components is obtained by 
following the scheme outlined in BH. Order-Gb terms in the momentum equation (2 .4~)  
enable a relation for the leading-order pressure gradient to be derived in the form 

(2.13) 

where here we have denoted by xo the value of the curvature parameter x taken at the 
downstream location at which the vortex motions are being studied. Additionally, 
O(Gg) and O(Gg) terms in the streamwise momentum equation (2.4b) and the spanwise 
momentum equation (2.4d) respectively show that 

Pll v,,, U,,, = 2, (2.14a) 1 k0 
1+,--- iao PlPll@ i&l, P2z -P21 P l J  @2 

ko k: 2kiPll 

Adding Po multiples of (2.14a), iko multiples of (2.14b) and P1 multiples of (2.12), 
differentiating the resulting equation with respect to @ and substituting for dPoll/d@ 
according to (2.13) leads to the required second equation relating the leading-order 
vortex quantities. 

20 FLM 269 
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As in BH it is convenient to invoke the scalings 
1 3  

ko = ~O&l)'kk, = iXiP$l& uoj, = X&% Ujw (2.15 a-c) 
1 8  2 4  

G j k  = xi& y k ,  Qo = -x"o11Q2, = ~fiOC11rU,2-rU211U12)~UI~xO%, (2.15d-f) 

where the notation Uojld, Gjk in (2.15 c, d) denotes that we apply this scaling to all the 
components of these general types in (2.8). These reductions lead to the equations as 
presented in BH for the leading-order vortex terms U,, and K1, viz. 

(2.1 6 a) 

2ih $ 
k2 k3 k3 dyF' k3 k3 

1------ iQ @@ ih$2)( -- d2 1) &+-y1+-Ul, = 0. (2.16b) 

Notice that the scaling (2.15 b) ensures that neutrally stable modes correspond to the 
case when the scaled parameter p is purely real valued. 

To complete our derivation of the evolution equation for the weakly nonlinear mode 
then, in keeping with the usual approach, we need to perturb the streamwise variation 
parameter p and scaled frequency 0 from their neutral values, say /3, and Qn 

respectively, by O(h2) quantities. Therefore we write 

@ = /3,,+h2p+ ..., SZ = SZ,+h2b+ ..., (2.17a, b) 

where terms of o(h2) need not be specified as they are too small to affect our results. 
It is convenient to define the operator L, by 

(2.18) 

and with this definition the leading-order system (2.16) may be written as 

2ih $ 
L1(Ull)-% k2 = 0, Ll(&- 1) y l + ~  V,,+- k3 U,, = 0, (2.19a, b) 

which needs to be solved subject to the conditions 

Ull, K1, dK,/d$+O as $ + O , c o ,  (2.1 9 c) 

in order to ensure zero disturbance quantities on the surface Y = 0 and that the vortex 
decays as Y+ co. 

To continue the process of obtaining governing equations for the remaining O(G-i) 
terms within the original expansions (2.8) is merely a matter of repeating the steps 
outlined in (2.9H2.14). The only new feature is that nonlinear terms begin to enter the 
analysis, but this causes no formal difficulties. Since this process has been illustrated 
above we merely state the solutions at each order of the analysis. 

Recalling the scalings (2.15) it is found that the harmonic terms V,, and U,, satisfy 

(2.20~) 
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subject to the boundary conditions that 

UZz,  K2, dV,,/d$+O as $-+o,a. (2.20c) 

Furthermore, the mean flow correction terms U,, and V,, are given by 

(2.21) 

where here, and henceforth, an asterisk used on a quantity denotes its complex 
conjugate. 

In order to derive the evolution equation for the vortex it is necessary to proceed to 
O(h3) terms in expansions (2.8). The O(h3) terms of importance are those proportional 
to El and these quantities, U,,, and &l, or in their scaled forms, U3, and Kl, satisfy 

v,, i b  i& Ll(u31)--= -+- u +- 1 dUT, V,2+-v,,+,,, d u2, dUz2 y* 11 

d$ k2 (ks I$) l1 k ( w  

+ - Gl - dV,2 + 2u2, S) +=, (2.224 
2 d$ d@ k2 

L, --1 2ih (:is ) k3 . . l + - ~ l + ~ = ( F + F ) ( - & - l ) v . l  i b  $9 

d3VT1 V?, d3K2) +V,,---- 
d$, 2 d$3 ' 

where 

(2.223) 

(2.224 

and (2.22~2, b) are subject to the boundary conditions 

51, dV,Jd$+O as @ + O , a .  (2.224 

The homogeneous forms of (2.22) are merely (2.19) and so, as is the normal method 
within a weakly nonlinear analysis, equations (2.22) only have a suitable solution if a 
certain compatibility condition is satisfied. This condition leads to the specification of 
the correction terms and d within the streamwise dependence and frequency 
expansions detailed by (2.17). To derive the compatibility requirement it is necessary 
to first consider the system adjoint to the homogeneous equations (2.19). This adjoint 
system consists of the functions fi$) and &($) which are the solutions of the coupled 
equations 

@ -  I& + G = 0, (2.23 a) 

20-2 
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with the associated conditions that F, and dG/d$ + 0 as $ + 0, co. Before proceeding 
further we should comment upon our definition of the amplitude of the vortex mode. 
Clearly the system (2.19) which determines the functions U,, and V,, is linear and so 
we have an arbitrary factor at our disposal. Therefore, for definiteness, we shall call 
{dU,,/d$}+o the scaled amplitude A of the vortex. Of course there are many other 
definitions we could use for this amplitude but this one is as good as any other. To 
obtain the equation for the vortex amplitude A it is seen (by multiplying (2.22~) by F, 
(2.22b) by 6, adding and integrating with respect to $) that for a solution of (2.22) to 
exist it is necessary that 

z 1 ~ A + z 2 h 4  = -1*A(A12, 

where (2.24~) 

(2.24 b) 

and I* = JomHd$, where 

(2.24~) 

The above analysis may be easily generalized so that the vortex evolves on a slow 
lengthscale and thence the growth or decay of a near neutral disturbance may be 
monitored. Formally, if we consider the neighbourhood of the point X = X, (the point 
at which an infinitesimal vortex is neutrally stable) and, allow a constant-frequency 
disturbance to develop on a lengthscale d where 2 = G-W2(X-Xn) with h -4 1, then 
the result of repeating the previous analysis for a disturbance of amplitude A(d) 
relative to the scalings implied in (2.8) is the evolution equation 

(2.25a) 

It is then simple to derive the equation for the vortex amplitude: 

(2.25 b) 

where c1 = 2 Re (- iz2/zl), c, = 2 Re (- iZ*/z,). (2.25c, d )  

In order to evaluate the coefficients in (2.25b) it is necessary to solve the systems (2.19), 
(2.20) and (2.23) so that the expressions for z1,z2 and I* as defined in (2.24) may be 
found. 

Finally, it is clear that if (Q,,p,,h) is an eigenset of (2.19) then so is ( -sZ, * ,  -,!i',*, 
- A )  for real crossflows A. Evidently, it is possible to restrict our attention to positive 

d 
-&412) = c1&4IZ+ C21AI4, 
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crossflow parameters without any loss of generality, and this is done for the remainder 
of the paper. 

3. Numerical methods and preliminary calculations 
In the context of their work on the viscous vortices BH were solely concerned with 

the numerical solution of the linear system (2.19). Their computations were based on 
a technique originally proposed by Malik, Chuang & Hussaini (1982) in which the 
differential equations to be solved are reduced to a set of linear algebraic equations 
using either a finite difference discretization or a spectral representation and the 
eigenvalues found by solving the characteristic determinant of a generalized eigenvalue 
problem. The particular method described in Malik et al. uses a fourth-order-accurate 
Euler-Maclaurin scheme with nodal points distributed so as to resolve any singular 
layers and was implemented in order to examine the temporal and spatial stability of 
a three-dimensional compressible boundary-layer flow over a swept wing. 

For the present work we attempted to adapt the methods used by BH but eventually 
concluded that we needed to use a more efficient algorithm here. The reasons for 
reaching this conclusion were twofold: first the form of the code relevant to the 
linearized problem (2.19) does not lend itself to easy modification for use in 
inhomogeneous problems such as (2.20). Second, and perhaps more importantly, BH 
conducted a small number of computations of solutions to (2.19) restricted to the three 
scaled frequency choices a, = 1, 0, - 1. In order to execute the additional calculations 
required to compute the amplitude equation coefficients c, and c2 as defined in (2.25) 
and to extend the results to a greater frequency range, it was felt that an improved 
algorithm was required. 

We first outline our computational technique as far as it applies to solving the 
homogeneous system (2.19). This system can be characterized by the pair of equations 

d4V d2V - dV d2 U 
-+di,7+/3,-++u V+S, U = 0, ;+&, U + P ,  V =  0, (3.1a, b) 
dY4 dY dY dY 

where the coefficients di,, oi,, . . . etc. are known functions of y .  The system comprising 
(3.1) with associated boundary conditions typified by (2.19~) is an eigenvalue problem 
and was solved by considering (3.1) with only five of the homogeneous boundary 
conditions invoked. In addition, a normalization constraint was imposed so that (3.1) 
was solved subject to 

U = I/= 0, dU/dy = 1 at y = 0, (3 .2~)  

U =  V=dV/dy+O as y + w .  (3.2b) 

Iteration on the eigenvalue ensured that the sixth boundary condition d V/dy = 0 at 
y = 0 was satisfied. Specifically, in the context of problem (2.19), system (3.1), (3.2) was 
solved for complex-valued /3, for chosen frequency a,, crossflow h and vortex 
wavenumber k .  Iteration on the imaginary part of /I, using a Newton iteration to vary 
h enabled neutrally stable solutions to be found: cubic splines were used to track along 
the neutral curves. 

As previously mentioned, a major benefit of the present algorithm over that used by 
BH is the much greater speed of calculation and this is due in part to the 
implementation of a variable mesh step. The equations (3.1) were discretized using 
central differencing on a grid running between y = 0 and y = Y ( ~ ) ,  where y(m) was 
chosen sufficiently large so that subsequent results were independent of its value. The 
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k 
FIGURE 1. The crossflow parameter h needed to ensure the neutral stability of vortices of various 

frequencies. SZ, = 3.0, 2.0, 1.0, 0, -0.1, -1.5, -2.0. 

algorithm permits any grid discretization although for the current problem extensive 
testing revealed that it was adequate to limit the form of the grid to four distinct 
regions, in each of which the grid spacing was some constant with the closer spacing 
towards y = 0 and sparser grid points towards fa). The choice of grid allowed us to 
use roughly one-third of the number of points needed by BH. Space limitations 
precludes more than this brief description of the numerical method, although a more 
detailed report of this aspect of this work may be obtained upon application to either 
author. 

As a check on the method described above it was decided to repeat some of the linear 
calculations of BH to ensure consistency. Although BH did conduct a few 
computations relevant to non-neutral infinitesimal modes it should be remembered 
that our current concern is ultimately with describing the weakly nonlinear modes 
outlined in $2: disturbances which by definition are ‘close’ to the linear neutral 
stability curve. Therefore effort was concentrated on the neutral modes of BH. For 
frequencies 52, E (-2,3) figure 1 shows the crossflow parameter h and figure 2 the 
parameter ,8, as functions of the scaled vortex wavenumber k. 

Certain trends surmized by BH on the basis of their numerical work restricted to 
three values of Qn are confirmed by our more extensive results. In particular it is seen 
that neutral modes appear to be possible over wide ranges of the wavenumber, and that 
for large k the crossflow needed to produce neutral modes is quite small (and is - k-2 
by the results of BH). Moreover, Denier et al. illustrated that for 52, = A = 0 all modes 
within the O(&)-wavenumber regime are unstable; consequently crossflow is seen to 
have a stabilizing effect. A striking difference also occurs depending upon the sign of 
the scaled frequency 52,. For 52,> 0 the neutral modes persist over the complete range 
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frequencies. SZ, = 3.0, 2.0, 1.0, 0, -1.0, -1.5, -2.0. 
FIGURE 2. The streamwise variation parameter of neutrally stable vortices of various 

of k, and as k + 0 the crossflow h required in order to preserve neutral modes tends to 
an O(1) value. However, for 9, < 0 BH and Bassom (1992) could not find such 
disturbances for all wavenumbers k and the neutral modes apparently disappeared for 
k < k,, where k, is some critical k. Figure 1 demonstrates that k ,  increases as 9, 
becomes more negative. 

For small wavenumbers k, figure 2 illustrates that the behaviour of the streamwise 
variation parameter /3, is also critically dependent upon $2,. For 9, 3 0, as k + 0 then 
p,+O smoothly (and is proportional to ki by the results of BH). A contrasting 
situation occurs for SZ, < 0 for now both h and /3, develop erratic behaviour as k 
decreases; behaviour which was also found in BH. 

3.1. The weakly nonlinear calculations 
Given the outline of the numerical method above, the implementation of the routines 
required to evaluate the amplitude equation coefficients c1 and c2 was straightforward. 
Once the homogeneous equations (2.19) were solved for the streamwise variation 
parameter /3, and scaled crossflow h in terms of the given frequency 52, and 
wavenumber k and the respective eigenfunctions Ull and V,, deduced, it was a simple 
matter to evaluate the mean flow quantities U,, and @, defined in (2.21) and (2.224. 
Next the solution of the inhomogeneous system (2.20) was required in order to 
determine the second-harmonic terms U,, and K2. (The solution method for 
inhomogeneous problems had to be adapted from that used for homogeneous ones and 
details of the necessary modifications can be obtained from the authors.) After solving 
for the adjoint functions j($) and 6($) as given by (2.23) the integrals z1 and z2 as 
defined in (2.24) were evaluated using Simpson’s rule and the amplitude equation 
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coefficients c,, c, thence deduced. The usual checks were made to ensure the accuracy 
of the numerical solutions of the systems (2.19), (2.20) and (2.23). 

4. Remarks o n  the weakly nonlinear properties of the vortex modes 
Implementation of the numerical procedures described in tj 3 led to the determination 

of the coefficients c, and c2 appearing in the amplitude equation (2.253). This equation 
demonstrates that the weak nonlinearity of the problem allows the existence of a 
threshold equilibrium amplitude A ,  given by 

IAJZ = - c1 d/c2, (4.1) 
with d > 0 or d < 0 as appropriate in order to ensure that the right-hand side of (4.1) 
is positive. Calculations were conducted for a variety of scaled frequencies R, taking 
values between -2 and 3 and the results are summarized in figures 3-5. Figure 3 
illustrates the dependence of the coefficient of the linear term in (2.253) (i.e. c,) upon 
SZ, and the vortex wavenumber k. It is observed that c1 > 0 across the whole range of 
wavenumber space, which indicates that according to linear theory a mode of 
frequency R, + hZd is unstable for h > 0 whereas it is stable for d < 0. This is to be 
expected as from figure 1 it may be deduced that for a fixed crossflow then as the 
frequency of the mode increases so it loses stability. 
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We turn now to interpret the findings summarized in figure 4 which illustrates the 
dependence of coefficient c, on k. This coefficient is of greater importance than c, for 
the sign of c, reveals the nature of the equilibrium amplitude A ,  as defined in (4.1). For 
all 52, it is seen that c, < 0 and consequently the weak nonlinearity of the flow leads 
to a stabilization of the vortices. In this case vortices with initial amplitude less than 
A ,  grow to A ,  whereas those with initial size greater than A ,  tend to diminish. 
However, it must be recalled that if the scaled amplitude A becomes too large the 
fundamental assumptions underlying weakly nonlinear theory are invalidated and a 
fully nonlinear account of the vortex structure is required. 

Equation (4.1) trivially yields information concerning the equilibrium amplitude A,, 
which is shown in figure 5 for the various values of 52,. Of course many features of this 
amplitude follow directly from the information portrayed in figures 3 and 4 and so 
require little additional comment. We mention first that for all the cases considered 
c, < 0 so that modes with perturbed frequency fi > 0 would be expected to evolve 
to these equilibrium amplitudes whereas those with h < 0 would decay to zero. As 
k+ co, IA,I + O  and as k decreases IA,I rises and reaches a maximum value and this 
maximum decreases with incresing IsZ,I. The form of figure S(a-c) suggests that for 
vortices of scaled frequency SZ, > 0 those modes with low wavenumbers relative to the 
O(d)  implied scaling would be more readily observed than those of greater 
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wavenumber. It should also be noted that as k+ 0 the calculations became increasingly 
sensitive to the grid spacing used and the slight wobbles in the curves as k --f 0 are a 
direct consequence of this. In particular, the results for k less than about 0.1 are to be 
treated as being preliminary in nature. For SZ, negative a number of the trends just 
described continue to persist. In particular, as 52, moves through increasingly more 
negative values IAJ decreases although its maximum value for any fixed frequency 
occurs at increasing values of k. 

To conclude this description of the weakly nonlinear calculations it is worthwhile to 
briefly recall the more salient results. Importantly, whereas BH showed that the effect 
of crossflow is to stabilize the O(Gi)-wavenumber modes according to a linearized 
theory, the above work has demonstrated that crossflow also stabilizes the modes on 
a weakly nonlinear basis. The corresponding equilibrium amplitudes calculated over a 
range of frequencies and wavenumbers reveals that the largest amplitudes are 
associated with near-stationary vortices and it can be tentatively proposed that these 
modes are the most likely candidates for practical observation. The analysis originally 
put forward by BH for small-wavenumber linearized vortices at scaled frequencies 
52, > 0 may be adapted to allow discussion of these modes using a weakly nonlinear 
approach and this is considered now. 
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5.  The low-wavenumber (k < 1) limit for Q, > 0 
The calculations presented in BH showed that when 52, > 0, k 4 1 the eigenfunctions 

U,, and V,, of system (2.19) are concentrated in a thin region near @ = 0. They 
demonstrated that these functions assume a multi-zoned structure form and that the 
crossflow h and streamwise variation parameter /3, required for neutral modes are 
given by 

where all the constants are real valued. The asymptotic structure for the solution is 
summarized in figure 6 where it is shown that the configuration divides into a main 
zone, 11, of thickness O(&) which contains a thin region I of depth O(ki), supplemented 
by a viscous wall layer I11 of thickness O(k), and a far-field zone, IV. It is to be recalled 
that the normalization chosen for all the numerical work in this paper is that Uil = 1 
at @ = 0. Guided by this requirement it is easy to adopt the workings of BH to show 
that the most important contributions to the integrals defined in (2.24) occur within the 
zone I wherein it is convenient to write 

$ = k$ho + kg(const + $). (5 .2~)  

Here +,, = 1.4752i and the constant has a value which is of no importance for the 

h = h , + h , k ~ +  ,.., /3,=/3nok~+/3nlk~+ ..., (5.1) 
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current workings. Furthermore, in zone I the solutions U,, and V,, develop according 
to 

(5.2b) 

where these functions satisfy 

WfiJ = El, ~l(MO{V;,H+2ihO V;, = - y o  fill, (5.2c, d )  
and where we have made the definition M N ( 0 )  = 0”- iN(Q+ A, $2) 0, in which the 
prime denotes differentiation with respect to 6. In (5.2c, d )  b is some constant and the 
solutions cll and El are subject to the conditions 

V;, + c/$, 011 + iC/(h, yP) as $1 + co. (5.2e) 

The parameter C is chosen so that U;, = 1 at @ = 0 and elementary matching between 
the solutions valid in each of the regions sketched in figure 6 leads to 

The eigenproblem (5.2) was first solved by Hall (1985) who showed that @,A;! fi: 4.71, 
Qh$ x - 2.89 (this latter value was misquoted in BH) which in turn gives A, z 0.4652i. 

Following this work taken from BH it is straightforward to deduce the forms of the 
remaining functions within the thin zone I. The adjoint functions are 

U,, = k-ifill($) + . . . , V,, = k*ql(&) + . . . , 

c x -0.21i@. (5.3) 

P =  ;($)+ ..., G = k8($)+ ..., 
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where M l ( f )  + $, 6 = 0, Ml(Mo(6))  - 4 2 ,  $(d6/d&) = f ,  ( 5 . 4 ~ ~  b) 

subject to the conditions that #K $-' and 6 cc $-3 as $1 --f m. Furthermore, U,, = 
k-fO2, + . . . , V,, = &V,, + . . . , where f i z 2  and E2 are odd-valued functions satisfying 

M2(G2,)- c2 = q1 cl- Gll el, ( 5 . 5 ~ )  

M,(M, (~ , ) )+~~A,  c z + 4 $ ,  G2, = 2 ( c 1  c - 2 V i l  El), (5 .5b)  

subject to the constraints that fi,, = O($-?) and <, = O($+) as $1 --f 00. Finally, 
within zone I the functions U,, and @, are 

U,, = k-fO2,($) + . . . , 

1 "  

0, = kG,($) + . . . , 

Formally, it is possible to use the expansions given above to deduce the forms of 
the various flow quantities in each of the remaining regions 11-IV. However, tedious 
but straightforward manipulations verify that the dominant contributions to the 
expressions (2 .24~-c)  arise from within zone I. 
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The systems (5.2), (5.4) and (5.5) were solved using adaptations of our general 

(5.7a, b) 

as k + 0. These asymptotic predictions provided reasonable agreement with the 
numerical results discussed in the preceding section. Results (5.7) then imply that the 
equilibrium amplitude 

which again suggests that it is the low-wavenumber and relatively low-frequency 
modes that have the greatest equilibrium amplitudes. However there is evidence from 
figure 5(a-c) that as k decreases, the accuracy of our computational work deteriorates. 
One difficulty with the prediction of A ,  as k + 0 is provided by the extreme smallness 
of the coefficient c2 (see (5.7b)). Clearly, tiny inaccuracies in the evaluation of c2 can 
have drastic consequences for the resulting value of IAJ. As k+O it has been 
demonstrated that the entire solution structure becomes compressed against the wall 
and then the numerical resolution of the distinct zones sketched in figure 6 is rendered 
increasingly difficult. As mentioned previously, we estimate that for wavenumbers k 
less than about 0.1 our solutions can only be regarded as tentative at best. 

technique and the amplitude equation coefficients were found to take the forms 
11 

c1 w 0.2sZ;gk;+. . . , C ,  z-7l2?k3+ ..., 

IA,I w 0.2l23k-+& 
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The scalings described above fail as 52, --f 0 for in this limit the thin layer I moves 
towards the wall and BH demonstrated that when Q, = O(kt) this layer merges with 
the viscous wall layer 111. Within the wall layer the governing equations now take the 
forms 

where the tilde denotes quantities scaled on suitable powers of k (fuller details are given 
in BH and Bassom 1992). In particular, 52, = k% and these wall-layer equations need 
to be solved subject to the conditions 

6, P anddP/dc+O at [ = 0  andas [+a. (5.8 c) 

Bassom (1992) used the numerical code of Malik et al. (1982) to solve (5.8) for a 
selection of values of d. As d --f 00 he showed how these low-frequency modes match 
with those for which 52, = O(1) but he could only manage to obtain solutions of (5.8) 
for d greater than d, z - 3.3. The work of Bassom (1992) was prompted in part by the 
finding of BH concerning the low-wavenumber structure outlined by (5.2) above. The 
asymptotic regions found by BH are only valid for positive values of 52, and that paper 
made tentative suggestions concerning possible configurations when 52, < 0. In 
particular, a critical-layer-type problem was proposed but no attempt was made to 
solve this. Subsequent calculations failed to find a solution and Bassom (1992) hoped 
to connect the 52, > 0 and 52, < 0 cases by investigating the intermediate problem 
where 0, = ktd by examining the numerical solutions of (5.8) as d+ - 00. However, 
the existence of the cutoff frequency dc below which numerical solutions were 
unattainable thwarted this aim. 

The system (5.8) was re-solved using the method developed in the current work. As 
in Bassom (1992), difficulties were encountered as d, was approached. Closer studies 
of this phenomenon revealed that as d + d, the eigensolution migrates from the wall 
[ = 0 and thus becomes almost completely independent of the boundary conditions 
imposed at the wall. Therefore the solution becomes insensitive to the values of the 
eigenparameters and numerical convergence is impossible to obtain. This type of 
behaviour typically occurs whenever a ‘null space’ of the system is approached and 
indicates that the elimination techniques employed to solve the discretized equations 
need to be replaced by a scheme which directly inverts the entire discretized set (such 
schemes are termed ‘global methods’). This is computationally extremely expensive 
but it does lead to a determination of a spectrum of eigenvalues of the problem. 

This difficulty, which arises when a null space of a problem is encountered, also 
provides the explanation for some of the other deficiencies in our numerical work to 
date. In figures 1 and 2 where neutral curves were presented it is noted that as 52, 
becomes progressively more negative the wavenumber range over which results were 
obtained diminishes. Investigations have shown that this is again due to approaching 
a null space of the appropriate system (2.19). BH also made some remarks concerning 
the properties of high-wavenumber modes. They formulated an eigenproblem 
appropriate to these vortices but did not solve this. It was noted that their calculations 
of solutions of the homogeneous system (2.19) failed for values of k larger than about 
1.4 and our further researches have confirmed that the reason for this failure is that 
the null space of system (2.19) is approached at about this value of k.  

In order to develop our findings of this paper further work is needed to investigate 
the global numerical methods. Preliminary runs with a small number of grid points 
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have been conducted for the eigenproblem (5.2) and for the small-frequency problem 
(5.8). Results for this latter problem have revealed the existence of solutions for fi lep 
than the cutoff value 6,. This indeed suggests that the previous problems for fi < 52, 
are entirely numerically based and have no physical significance. As yet there are too 
few results from the computationally intensive global method to justify a fuller 
discussion here. However, it is probable that developments vith these ideas will lead 
to an improved explanation of the large-wavenumber and the small-k, 52,, -= 0 limits. 

6. Discussion 
The main conclusion of our work has been that over all the wavenumbers and 

frequencies investigated the influence of weak nonlinearity is stabilizing and the 
consequent supercritical equilibrium amplitudes have been evaluated. These amplitudes 
tend to be largest for vortices of small wavenumber and frequency relative to the initial 
scalings and suggest that it is these modes that would appear to be the most likely to 
be observed in practice. A limited asymptotic study has been accomplished which 
yields indications of the solution characteristics for small k and positive scaled 
frequencies 52,. However, the corresponding work for negative 52, and that relevant to 
large wavenumbers k was not completed owing to difficulties in encountering null 
spaces of the governing differential systems. As reported in the previous section, 
preliminary work has begun using more appropriate numerical methods in order to 
circumvent these problems. We feel that these calculations are important for the 
following reason. The work described by BH and that here has conclusively 
demonstrated that both the linear and weakly nonlinear properties of these viscous 
vortices are critically dependent upon the sign of the scaled frequency and crossflow A. 
For any particular boundary layer either case may be the more relevant (depending 
upon the signs of the scaling quantities within (2.15)) and so it is desirable that both 
eventualities are analysed properly. Whereas the solution properties are now 
reasonably well understood for 52, > 0 this understanding is clearly deficient for 52, < 0 
and work on this latter case is continuing. 

One advantage of concentrating on the O(Gk)-wavenumber modes, apart from the 
fact that these are the most unstable linear vortices for a two-dimensional boundary 
layer, is that the structure of the disturbance permits all the basic flow quantities that 
are functions of the particular boundary layer to be scaled out of the problem leaving 
a system of equations which is valid for a wide variety of three-dimensional flows. 
Consequently the scalings (2.15) would need to be reversed in order to assess the 
implications of our findings for any specified flow. 

We emphasize that the validity of the study here is restricted to the wavenumber 
regime k = O(d).  As the scaled wavenumber k, defined by (2.5b) tends to zero the 
vortices become inviscid in character and the Stuart-Watson approach becomes 
invalidated. The theory is then replaced by a revised structure which is, to the best of 
our knowledge, as yet unknown. For k, --f 00 a match is obtained with the work of Hall 
(1985). This paper showed, using linear theory, that neutral Gortler vortices were 
possible at crossflows smaller than those encountered in this paper. Such vortices are 
likely to be governed by an adaptation of the ‘mean-field’ theory valid in the vicinity 
of the right-hand branch of the usual neutral curve appropriate to vortices in a two- 
dimensional boundary layer. We have not attempted to obtain the match between our 
weakly nonlinear account and this mean-field adaptation as such a structure would 
come into play at crossflow values smaller than those considered here, at which stage 
all the O(G;)-wavenumber modes would still be linearly unstable. 
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A question that merits attention is that pertaining to the nature of the fully nonlinear 
properties of viscous vortices in three-dimensional boundary layers. The investigation 
of Denier & Hall (1993) described in the introduction has concentrated upon the two- 
dimensional version of this problem and showed that in general the vortex suffers a 
finite-distance algebraic breakdown as it develops downstream. Denier & Hall were 
unable to conduct a weakly nonlinear analysis of the type discussed here for in the two- 
dimensional boundary layer there are no neutral modes of wavenumber O(d). The 
results of BH and the extensions presented in the current work show that the effect of 
three-dimensionality is to stabilize the vortex mode. Therefore the three-dimensional 
version of Denier & Hall (1993) would be most valuable in deciding whether fully 
nonlinear or crossflow effects are the more important. The former induces a 
catastrophic breakdown in the flow whereas the latter effect is stabilizing and so it can 
be anticipated that there may well be a delicate balance between the two. 

BH investigated the linear stability properties of both O( 1)-wavenumber inviscid 
modes and the O(G$wavenumber vortices considered in this paper. They attempted 
to resolve the question as to which mode is the more likely candidate for practical 
observation. By carrying out a linearized receptivity calculation of the type given in 
Denier et al. (1991) relevant to Gortler vortices in two-dimensional boundary layers, 
BH were able to show that wall roughness is a more efficient stimulator of the viscous 
modes than the inviscid ones and thus the viscous modes might be the easier to generate 
experimentally. However, they also pointed out that as the crossflow increases, the 
growth rates of the inviscid modes increase to become larger than the viscous rates. 
Thus beyond a certain crossflow size the observed instability may well be of Rayleigh- 
type character. 

In many practical situations where Gortler vortices are thought to be a likely cause 
for transition the basic state is three-dimensional. Our work has demonstrated that a 
crossflow of small size O(Re-@) is suffucient to stabilize vortex modes according to 
a weakly nonlinear basis, but the results of Denier & Hall (1993) indicate that full 
nonlinearity of the disturbance may well lead to rapid breakdown. The relative 
importance of these crossflow and nonlinear mechanisms is a matter of some interest, 
which can only be resolved by extending our findings to the fully nonlinear regime. This 
problem should obviously be a topic of careful theoretical and practical investigations 
of the Gortler mechanism in three-dimensional boundary layers. 
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